Search results for "moduli space"

showing 10 items of 45 documents

On GIT quotients of Hilbert and Chow schemes of curves

2011

The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree d and genus g in P^{d-g}, whose full details will appear in a subsequent paper. In particular, we extend the previous results of L. Caporaso up to d>4(2g-2) and we observe that this is sharp. In the range 2(2g-2)<d<7/2(2g-2), we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.

Pure mathematics14L30General MathematicsCompactified universal JacobianHilbert scheme01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsProjective spaceCompactification (mathematics)0101 mathematicsAlgebraic Geometry (math.AG)QuotientMathematicsDegree (graph theory)010102 general mathematicsChow schemeGIT quotientGITModuli spaceStable curvesHilbert schemeScheme (mathematics)Settore MAT/03 - Geometria010307 mathematical physicsPseudo-stable curveElectronic Research Announcements in Mathematical Sciences
researchProduct

On the geometry of S2

2009

We investigate topological properties of the moduli space of spin structures over genus two curves. In particular, we provide a combinatorial description of this space and give a presentation of the (rational) cohomology ring via generators and relations.

Spin curvemoduli spacecohomology ringSettore MAT/03 - Geometria
researchProduct

A note on the unirationality of a moduli space of double covers

2010

In this note we look at the moduli space $\cR_{3,2}$ of double covers of genus three curves, branched along 4 distinct points. This space was studied by Bardelli, Ciliberto and Verra. It admits a dominating morphism $\cR_{3,2} \to {\mathcal A}_4$ to Siegel space. We show that there is a birational model of $\cR_{3,2}$ as a group quotient of a product of two Grassmannian varieties. This gives a proof of the unirationality of $\cR_{3,2}$ and hence a new proof for the unirationality of ${\mathcal A}_4$.

Pure mathematicsModular equationGeneral MathematicsModuli spaceModuli of algebraic curvesAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometryMorphismGenus (mathematics)GrassmannianFOS: MathematicsGeometric invariant theoryAlgebraic Geometry (math.AG)QuotientMathematicsMathematische Nachrichten
researchProduct

Derived categories of irreducible projective curves of arithmetic genus one

2006

We investigate the bounded derived category of coherent sheaves on irreducible singular projective curves of arithmetic genus one. A description of the group of exact auto-equivalences and the set of all $t$ -structures of this category is given. We describe the moduli space of stability conditions, obtain a complete classification of all spherical objects in this category and show that the group of exact auto-equivalences acts transitively on them. Harder–Narasimhan filtrations in the sense of Bridgeland are used as our main technical tool.

Discrete mathematicsDerived categoryPure mathematicsAlgebra and Number TheoryFourier–Mukai transformGroup (mathematics)Moduli spaceCoherent sheafMathematics::Algebraic GeometryMathematics::Category TheoryBounded functionArithmetic genusAlgebraic curveMathematicsCompositio Mathematica
researchProduct

No-scale N=4 supergravity coupled to Yang-Mills: the scalar potential and super-Higgs effect

2002

We derive the scalar potential of the effective theory of type IIB orientifold with 3-form fluxes turned on in presence of non abelian brane coordinates. N=4 supergravity predicts a positive semidefinite potential with vanishing cosmological constant in the vacuum of commuting coordinates, with a classical moduli space given by three radial moduli and three RR scalars which complete three copies of the coset (U(1,1+n)/U(1)\otimes U(1+n)), together with 6n D3-branes coordinates, n being the rank of the gauge group G. Implications for the super Higgs mechanism are also discussed.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsSupergravityFísicaModuli spaceModulisymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryOrientifoldGauge groupHiggs bosonsymbolsBraneHiggs mechanismParticle Physics - TheoryMathematical physics
researchProduct

The algebraic structure of cohomological field theory

1993

Abstract The algebraic foundation of cohomological field theory is presented. It is shown that these theories are based upon realizations of an algebra which contains operators for both BRST and vector supersymmetry. Through a localization of this algebra, we construct a theory of cohomological gravity in arbitrary dimensions. The observables in the theory are polynomial, but generally non-local operators, and have a natural interpretation in terms of a universal bundle for gravity. As such, their correlation functions correspond to cohomology classes on moduli spaces of Riemannian connections. In this uniformization approach, different moduli spaces are obtained by introducing curvature si…

Pure mathematicsTopological quantum field theoryDifferential formAlgebraic structureGeneral Physics and AstronomyCodimensionModuli spaceAlgebraOperator algebraQuantum gravityGeometry and TopologyOperator product expansionMathematical PhysicsGeneral Theoretical PhysicsMathematics
researchProduct

Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects

2016

We revisit the work of Lehn-Lehn-Sorger-van Straten on twisted cubic curves in a cubic fourfold not containing a plane in terms of moduli spaces. We show that the blow-up $Z'$ along the cubic of the irreducible holomorphic symplectic eightfold $Z$, described by the four authors, is isomorphic to an irreducible component of a moduli space of Gieseker stable torsion sheaves or rank three torsion free sheaves. For a very general such cubic fourfold, we show that $Z$ is isomorphic to a connected component of a moduli space of tilt-stable objects in the derived category and to a moduli space of Bridgeland stable objects in the Kuznetsov component. Moreover, the contraction between $Z'$ and $Z$ i…

Connected componentDerived categoryPure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsHolomorphic function01 natural sciencesModuli spaceMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesTorsion (algebra)FOS: Mathematics010307 mathematical physics0101 mathematicsMathematics::Representation TheoryMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)Irreducible componentTwisted cubicMathematicsSymplectic geometry
researchProduct

Integrable systems, Frobenius manifolds and cohomological field theories

2022

In this dissertation, we study the underlying geometry of integrable systems, in particular tausymmetric bi-Hamiltonian hierarchies of evolutionary PDEs and differential-difference equations.First, we explore the close connection between the realms of integrable systems and algebraic geometry by giving a new proof of the Witten conjecture, which constructs the string taufunction of the Korteweg-de Vries hierarchy via intersection theory of the moduli spaces of stable curves with marked points. This novel proof is based on the geometry of double ramification cycles, tautological classes whose behavior under pullbacks of the forgetful and gluing maps facilitate the computation of intersection…

Cohomological field theorySystème intégrableHiérarchie de Dubrovin et Zhang[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Espace de modules de courbes stablesDouble ramification cyclesThéorie cohomologique des champsNonlinear Sciences::Exactly Solvable and Integrable SystemsIntegrable systemsModuli space of stable curvesDubrovin-Zhang hierarchyFrobenius manifoldsCycles de ramification doubleMathematics::Symplectic GeometryVariété de Frobenius
researchProduct

Corrigendum to “The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense” [Adv. Math. 272 (2015) 699–742]

2015

Pure mathematicsMonodromyGeneral MathematicsMathematical analysisModuli spaceMathematicsAdvances in Mathematics
researchProduct

The Lang–Vojta Conjectures on Projective Pseudo-Hyperbolic Varieties

2020

These notes grew out of a mini-course given from May 13th to May 17th at UQAM in Montreal during a workshop on Diophantine Approximation and Value Distribution Theory.

Pure mathematicsDistribution (number theory)Projective testDiophantine approximationAutomorphismValue (mathematics)Moduli spaceMathematics
researchProduct