Search results for "moduli space"
showing 10 items of 45 documents
On GIT quotients of Hilbert and Chow schemes of curves
2011
The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree d and genus g in P^{d-g}, whose full details will appear in a subsequent paper. In particular, we extend the previous results of L. Caporaso up to d>4(2g-2) and we observe that this is sharp. In the range 2(2g-2)<d<7/2(2g-2), we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.
On the geometry of S2
2009
We investigate topological properties of the moduli space of spin structures over genus two curves. In particular, we provide a combinatorial description of this space and give a presentation of the (rational) cohomology ring via generators and relations.
A note on the unirationality of a moduli space of double covers
2010
In this note we look at the moduli space $\cR_{3,2}$ of double covers of genus three curves, branched along 4 distinct points. This space was studied by Bardelli, Ciliberto and Verra. It admits a dominating morphism $\cR_{3,2} \to {\mathcal A}_4$ to Siegel space. We show that there is a birational model of $\cR_{3,2}$ as a group quotient of a product of two Grassmannian varieties. This gives a proof of the unirationality of $\cR_{3,2}$ and hence a new proof for the unirationality of ${\mathcal A}_4$.
Derived categories of irreducible projective curves of arithmetic genus one
2006
We investigate the bounded derived category of coherent sheaves on irreducible singular projective curves of arithmetic genus one. A description of the group of exact auto-equivalences and the set of all $t$ -structures of this category is given. We describe the moduli space of stability conditions, obtain a complete classification of all spherical objects in this category and show that the group of exact auto-equivalences acts transitively on them. Harder–Narasimhan filtrations in the sense of Bridgeland are used as our main technical tool.
No-scale N=4 supergravity coupled to Yang-Mills: the scalar potential and super-Higgs effect
2002
We derive the scalar potential of the effective theory of type IIB orientifold with 3-form fluxes turned on in presence of non abelian brane coordinates. N=4 supergravity predicts a positive semidefinite potential with vanishing cosmological constant in the vacuum of commuting coordinates, with a classical moduli space given by three radial moduli and three RR scalars which complete three copies of the coset (U(1,1+n)/U(1)\otimes U(1+n)), together with 6n D3-branes coordinates, n being the rank of the gauge group G. Implications for the super Higgs mechanism are also discussed.
The algebraic structure of cohomological field theory
1993
Abstract The algebraic foundation of cohomological field theory is presented. It is shown that these theories are based upon realizations of an algebra which contains operators for both BRST and vector supersymmetry. Through a localization of this algebra, we construct a theory of cohomological gravity in arbitrary dimensions. The observables in the theory are polynomial, but generally non-local operators, and have a natural interpretation in terms of a universal bundle for gravity. As such, their correlation functions correspond to cohomology classes on moduli spaces of Riemannian connections. In this uniformization approach, different moduli spaces are obtained by introducing curvature si…
Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects
2016
We revisit the work of Lehn-Lehn-Sorger-van Straten on twisted cubic curves in a cubic fourfold not containing a plane in terms of moduli spaces. We show that the blow-up $Z'$ along the cubic of the irreducible holomorphic symplectic eightfold $Z$, described by the four authors, is isomorphic to an irreducible component of a moduli space of Gieseker stable torsion sheaves or rank three torsion free sheaves. For a very general such cubic fourfold, we show that $Z$ is isomorphic to a connected component of a moduli space of tilt-stable objects in the derived category and to a moduli space of Bridgeland stable objects in the Kuznetsov component. Moreover, the contraction between $Z'$ and $Z$ i…
Integrable systems, Frobenius manifolds and cohomological field theories
2022
In this dissertation, we study the underlying geometry of integrable systems, in particular tausymmetric bi-Hamiltonian hierarchies of evolutionary PDEs and differential-difference equations.First, we explore the close connection between the realms of integrable systems and algebraic geometry by giving a new proof of the Witten conjecture, which constructs the string taufunction of the Korteweg-de Vries hierarchy via intersection theory of the moduli spaces of stable curves with marked points. This novel proof is based on the geometry of double ramification cycles, tautological classes whose behavior under pullbacks of the forgetful and gluing maps facilitate the computation of intersection…
Corrigendum to “The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense” [Adv. Math. 272 (2015) 699–742]
2015
The Lang–Vojta Conjectures on Projective Pseudo-Hyperbolic Varieties
2020
These notes grew out of a mini-course given from May 13th to May 17th at UQAM in Montreal during a workshop on Diophantine Approximation and Value Distribution Theory.